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We attempt to clarify the factors that regulate the propagation and structure of gravity 
currents through evaluation of idealized theoretical models along with two-dimensional 
numerical model simulations. In particular, we seek to reconcile research based on 
hydraulic theory for gravity currents evolving from a known initial state with analyses 
of gravity currents that are assumed to be at steady state, and to compare these 
approaches with both numerical simulations and laboratory experiments. The time- 
dependent shallow-water solution for a gravity current propagating in a channel of 
finite depth reveals that the flow must remain subcritical behind the leading edge of the 
current (in a framework relative to the head). This constraint requires that 
h,/d < 0.347, where h, is the height of the front and d is the channel depth. Thus, in 
the lock-exchange problem, inviscid solutions corresponding to h,/d = 0.5 are 
unphysical, and the actual currents have depth ratios of less than one half near their 
leading edge and require dissipation or are not steady. We evaluate the relevance of 
Benjamin’s (1968) well-known formula for the propagation of steady gravity currents 
and clarify discrepancies with other theoretical and observed results. From two- 
dimensional simulations with a frictionless lower surface, we find that Benjamin’s 
idealized flow-force balance provides a good description of the gravity-current 
propagation. Including surface friction reduces the propagation speed because it 
produces dissipation within the cold pool. Although shallow-water theory over- 
estimates the propagation speed of the leading edge of cold fluid in the ‘dam-break’ 
problem, this discrepancy appears to arise from the lack of mixing across the current 
interface rather than from deficiencies in Benjamin’s front condition. If an opposing 
flow restricts the propagation of a gravity current away from its source, we show that 
the propagation of the current relative to the free stream may be faster than predicted 
by Benjamin’s formula. However, in these situations the front propagation remains 
dependent upon the specific source conditions and cannot be generalized. 

1. Introduction 
Cold-air masses flowing along the ground play an important role in a variety of 

atmospheric processes and often bear striking similarity to gravity currents produced 
in the laboratory. In analysing the propagation of atmospheric gravity currents, 
researchers have made broad application of a formula, proposed by Benjamin (1968), 
that relates the speed of a steady-state gravity current to the depth and density 
difference of the intruding stream as well as the depth of the effective channel that 
bounds the flow. However, in applying this relation to geophysical gravity currents, 
numerous apparent discrepancies have arisen that have spawned a variety of 
explanations and modifications to the formula. Even in laboratory studies of gravity 
currents, there are ambiguities in applying and interpreting Benjamin’s result. In the 
present study, we use idealized theoretical models along with numerical models to 
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investigate the propagation of gravity currents and to evaluate the validity of 
Benjamin’s formula. Stimulated by atmospheric applications and recognizing the 
linear nature of many cold-air boundaries, we shall focus primarily on two-dimensional 
Boussinesq flow. 

Research on gravity currents has generally approached the topic from one of two 
different perspectives, One direction of research has used hydraulic (shallow-water) 
theory to study the evolution of gravity currents from a state of rest, while the other 
has investigated the steady-state characteristics of a gravity current that has already 
been established. Because the realizability of possible steady-state structures may 
depend on the factors producing them, both theories are needed, and moreover the 
relation between the two must be clearly established. The problem of a dense fluid 
initially at rest, that then spreads under its own weight after a retaining barrier is 
removed, is an appropriate paradigm for many atmospheric gravity currents. We 
review the hydraulic theory relating to this so-called ‘dam-break’ problem in $2. A 
result of this theory that is particularly relevant to the present study is that steady-state 
solutions are possible in the vicinity of the leading edge (or nose) of the advancing 
dense fluid if a certain type of boundary (front) condition is applied at the nose. 
Independent of the hydraulic theory, researchers have taken the steady gravity current 
as an empirically given fact, and then determined the relations that must therefore 
hold. This approach has led to formulae that relate the gravity-current speed to its 
depth - essentially the ‘front conditions’ required to provide closure in the shallow- 
water solutions. Benjamin’s (1968) well-known formula is of this class and is reviewed, 
along with others, in $2. 

In order to integrate these two approaches, we investigate further the dam-break 
problem within a channel of finite depth in $3. We follow the general approach of 
Rottman & Simpson (1983) (with some important modifications) and use the two-layer 
shallow-water equations with Benjamin’s (1968) formula to determine the propagation 
speed of the leading edge of the current. This initial-value approach is revealing as it 
clearly shows the constraints that regulate both the upstream- (into the reservoir) and 
downstream-propagating disturbances. In particular, we find that the upstream- 
propagating disturbances form a rarefaction wave for reservoir depths h, less than one 
half the channel depth d, but steepen into an abrupt front for hold > 0.5, and that the 
downstream-moving front cannot exceed a depth of hf/d = 0.347. 

Comparisons with laboratory data show that the shallow-water solutions, with 
Benjamin’s formula used as a front condition, give a very good qualitative picture of 
the flow evolution, and its dependence on the external parameters of the problem. 
However, the theory does overpredict the gravity-current speed. Without further 
information, it is not clear whether the shallow-water theory itself, Benjamin’s front 
condition, or the absence of surface drag, is responsible for this discrepancy. 

To help resolve this issue, we present two-dimensional simulations for a continuous 
fluid with and without surface drag in $4. Without surface drag, the simulations 
indicate that Benjamin’s formula in fact provides a good approximation to the steady 
flow-force balance. Including the effects of interfacial mixing which are absent in the 
shallow-water equations, the two-dimensional simulations are in closer agreement with 
the laboratory data. However, surface drag is finally needed to produce close 
quantitative agreement between the model and data. 

Under certain circumstances, gravity currents may propagate faster than predicted 
by Benjamin’s condition. We address this behaviour in $ 5  and conclude that it may 
occur when the front is constrained from propagating away from the source region. An 
overall summary of results and concluding remarks are given in $6. 



The dynamics of gravity currents in a channel 171 

2. Historical perspective 
2.1. Initial-value hydraulic solutions 

Much of the early interest in gravity currents arose in hydraulics research on topics 
such as intrusions of fresh or salt water in the vicinity of locks and estuaries, spreading 
oil spills, and collapsing dams. In these problems, the initial state is often well defined 
and research has focused on the evolution of the flow as two fluids of differing density 
come into contact. In summarizing research in this area, we focus on the basic question 
of how a relatively heavy fluid spreads relative to its environment, with emphasis on 
situations relevant to atmospheric flows. 

The simplest theory for a spreading cold pool represents the cold fluid as a rectangle 
that conserves its area as its aspect ratio increases with time. This approach was 
explored by engineers concerned with oil spills (Hoult 1972), and predicts that at large 
time i the front speed decreases as td ,  while the height decreases as t-;. However, these 
results stand in contrast to observations of storm outflows and fronts that frequently 
exhibit fairly constant height and steady speed. This suggests that atmospheric gravity 
currents are often continually supplied with cold air. 

A continuous supply of denser fluid is provided when an initially stationary semi- 
infinite reservoir of height h, spreads under its own weight, as illustrated in figure 1 (a). 
Although many of the early hydraulic studies focused on water-air systems in which 
the density difference is large, the same dynamical equations can be derived for fluids 
exhibiting smaller density differences using a suitably reduced value for the 
gravitational acceleration (cf. Stoker 1957, p. 388). Because of our interest in 
Boussinesq systems, we shall summarize these earlier studies based on the shallow- 
water equations including this reduced gravity, which for atmospheric flow can be 
expressed as 

au au ah 
-+u-+g/- = 0 ,  
at ax ax 

8h auh -+- = 0,  
at ax 

where h and u are the depth and horizontal velocity of the cold air (having potential 
temperature 0,) spreading into an environment having potential temperature and 

is the reduced gravity. 
In hydraulics, this is the well known dam-break problem, and was solved using the 

method of characteristics in terms of the characteristic variables u f 2(g‘hy 
propagating at speeds u k (g’h);, respectively. Saint-Venant solved this problem in 1843 
assuming the height of the cold pool drops continuously to zero approaching the 
leading edge (see Keulegan 1950, or Stoker 1957). Following the downstream- 
propagating characteristic from far upstream in the reservoir where u = 0, 

and thus the leading edge moves downstream at speed uf = 2c,. The leading edge of the 
depression wave moves upstream at speed - c,  and the surface between these extremes 
maintains a parabolic shape as shown in figure 1 (a).  At the original dam location, the 
flow remains just critical (i.e. the flow speed just equals the wave speed). Using 
ud = (g’h,); together with ( 3 )  revealed that remarkably, 

u + 2(g’h)i = 2(g’h,)i 2c0, (3) 

U d  = i c ,  and ha = tho (4) 
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(a? c= -(g’h,)i 

d xr 
FIGURE 1. Dam-break problem using the method of characteristics. (a) Saint-Venant’s solution. 

(b )  Solution subject to a front condition as expressed in (5) .  

for all time. Early laboratory experiments by Schoklitsch (1917) produced good 
agreement with the upstream-propagating depression wave, but the propagation 
downstream progressed at about one half the theoretical estimate. 

Abbott (1961) recognized this discrepancy and suggested that the front of the cold 
pool advances like a ‘wall’ of fluid. On dimensional grounds, he proposed that 

uf = k(g’h,)i ( 5 )  

at the front of the expanding pool. For k 2 1, this ‘front condition’ produces shallow- 
water solutions that exhibit a zone of constant state behind the leading edge, as shown 
in figure 1 (b), in which 

2kc, 2 

h, = h, (2) 
2+k  

u -- f-2+k’ 

in order to satisfy (3) and (5) .  In this situation, disturbances near the front cannot 
propagate back to the reservoir, and the critical conditions (4) at xd maintain ‘control’ 
of the downstream-propagating gravity current. 

The results characterized by (5) and (6) still leave the gravity-current propagation 
undetermined to a constant factor k. In fact, one can obtain solutions to (1)-(2) for k 
ranging over 0 < k d co (corresponding to 0 < uf < 2 4  and imagine realizing these 
solutions by placing a piston at the leading edge of the cold pool and drawing it 
downstream at any constant speed u, in this range. Thus, an additional external 
condition is required to determine the front condition that takes into account flow 
outside the cold pool. Keulegan (1950) recognized that Saint Venant’s solution (see 
figure 1 a) is altered by surface resistance. However, this interpretation does not suggest 
a means for deducing k.  

Abbott argued that ‘stability considerations’ would require k = 1 and thus the 
constant zone would extend all the way back to the dam site x,. Fannelop & Waldman 
(1972) also proposed that k = 1 at large times based on reasoning that the flow at the 
leading edge of a gravity current is similar to a hydraulic jump. However, the nose of 
a gravity current cannot be viewed as such since no fluid passes through the front. The 
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ambiguity of arguments such as these left the investigations of gravity-current 
propagation based on hydraulic theory without a clear resolution. 

2.2. Steady-state analyses 

In the atmosphere, the initial conditions that produce gravity currents are generally 
either not well understood or too complex to be described in a generalized analysis. 
Recognizing that gravity currents often exhibit a nearly constant shape and speed, 
other investigators followed an independent line of inquiry, assuming that the gravity 
current achieves a steady-state structure, and evaluating its properties without regard 
to the specific conditions that produced it. 

Based on a steady-state inviscid model, von Karman (1940) derived an expression 
for gravity-current propagation in an infinitely deep medium. In a coordinate 
framework moving with the nose of the gravity current, a flow with a constant speed 
- U approaches from the right, as indicated in figure 2(a). He assumed that the fluid 
within the cold pool is stagnant and that the height H far behind the heads tends to a 
constant and uI = - U. Applying the inviscid Bernoulli equation along the fluid 
interface between the stagnation point having pressure p ,  and a location 1 far behind 
the head, and using the hydrostatic equation at I ,  von Karmin obtained 

or 
p , ( H )  +;uz = p ,  = p,(0) = p , ( H )  +g’H 

CJ = (2g’H);, (7) 
which has been widely quoted in the literature. 

In a more comprehensive analysis, Benjamin (1968) developed solutions for steady 
gravity currents in a finite-depth channel (see figure 26) in which dissipation could 
occur. To summarize Benjamin’s analysis, we employ the shallow anelastic equations 
of motion, which contain the essential physics of the problem. For steady flow, the 
horizontal momentum equation is simply 

where ( u , ~ )  are velocity components in the (x ,z)  coordinates, p is a modified 
perturbation pressure, and T represents either the viscous or turbulent shear stress. Far 
from the leading edge of the cold pool, the vertical momentum equation reduces to the 
hydrostatic relation 

ap 0-0 ,  
;?z=g-- 4 (9) 

Integrating (8) from a point r far ahead of the leading edge (to the right in figure 2)  to 
a point 1 far behind and across the channel of width d, the stress terms vanish (assuming 
zero-stress wall conditions and that turbulent fluctuations are weak far downstream), 
producing the flow-force balance 

Assuming pT = 0 far ahead, p,s = +Uz at the stagnation point x ,~ .  Far behind the head, 
applying (9) yields p l  = iU2--g’z within the cold pool with p , ( H )  = p , ( d )  = iU2-g’H 
above, and continuity requires uL = - Ud/(d-  H ) .  Substituting these relations into (10) 
defines the velocity required to maintain a steady flow, and yield Benjamin’s well- 
known formula 

(11) 
U 2(1-a)(l-O,5a) -=( (g HIP l + a  
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(4 
U,=-U 
.+- 

- U  - 

x.v 

FIGURE 2. (a) Steady inviscid gravity current proposed by von Karman. (b) Steady gravity current 
in channel analysed by Benjamin. 

where ol = H / d .  The factors involving a represent the ‘ finite-depth’ effect and cause the 
gravity current to propagate more slowly as the channel depth decreases. 

A steady propagating cold pool is analogous in many respects to steady flow past a 
semi-infinite half body. The drag D on the cold-pool half-body must just balance the 
net horizontal pressure (motive) force within the cold pool, such that 

For inviscid flow past a half-body, the drag must vanish as d+m (cf. Prandtl & 
Tietjens 1934, p. 118), and, therefore, this motive force cannot be balanced. Thus, 
Benjamin argued that von Karman’s steady-state energy-conserving flow cannot exist. 
This contradiction is apparent in the above flow-force balance; using the inviscid 
pressure p I  = $( U 2  -u:) instead of p l  = +U2 -g‘H (which are asymptotically identical 
as d+ m), (10) yields 

u 1-ol l = T - + o o  as a+O. 
(g’H)% ax 

Although (1 1) reduces to von Kirmin’s result (7) as 01 + 0, Benjamin argued that this 
is ‘no more than a coincidence’. 

To account for energy dissipation, Benjamin introduced a head loss A along each 
streamline that is constant with height. Thus, g‘A = -p t  + ;( U2 - u;) requires that 

A - 41-2a) 
77 - 2(1-a2) ’ 

corresponding to an overall dissipation rate ed = pUdg’A.  Although A + 0 as a+ 0, it 
cannot be neglected in p l  since in this limit, the integral of g’A across the channel is 
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exactly the drag expressed in (12). Consequently, the inviscid assumption (A = 0) is 
valid only for a: = f .  

Benjamin’s assumption that the head loss along streamlines passing over the gravity 
current is independent of height is admittedly unrealistic. In observed gravity currents, 
the dissipation is concentrated in the vicinity of the interface between the two streams, 
and flow in the upper portion of the channel may remain inviscid far downstream. 
(This result is confirmed in our numerical simulations in $4.) To evaluate the sensitivity 
of Benjamin’s result to this assumption, we have derived an alternative expression for 
the propagation speed and dissipation assuming that the head loss is localized in the 
vicinity of the cold pool. The details of this derivation are presented in the Appendix. 
This analysis yields results that are nearly indistinguishable from those derived by 
Benjamin, providing further support for the robust nature of his result. The 
insensitivity of the gravity-current propagation to the distribution of the dissipation 
suggests that (subject to verification in $4) numerical simulations of gravity currents 
may not depend strongly on the details of the parameterized turbulent mixing. Rather, 
the turbulent diffusion may act to produce an overall dissipation that just balances the 
motive force of the cold pool. 

2 . 3 .  Combined initial-value and steady-state theory 

A logical reconciliation of the initial-value and steady-state approaches described 
above is achieved by solving the time-dependent hydraulic equations together with a 
front condition obtained from a steady-state flow-force balance across the leading edge 
of the gravity current. In this manner, Benjamin’s formula (11) replaces (5 )  as the 
appropriate front condition. Rottman & Simpson (1983) followed an approach similar 
to this in solving the time-dependent two-layer shallow-water equations to investigate 
the propagation of relatively dense fluid from a reservoir into a channel. For the front 
condition at the leading edge of the advancing cold pool, they specified a modified form 
of Benjamin’s formula : 

which includes an adjustable parameter k’ and becomes identical to (1 1) for k’ = ~ ’ 2 .  
Rottman and Simpson obtained solutions to the shallow-water equations for reservoir 
depths in the range 0 < h,/d ,< i, and through comparisons with companion laboratory 
experiments, found that k‘ w 1 provided the best agreement with their data. 

2.4. Comparisons with observed gravity currents 
The ultimate test of the validity of these theoretical formulae lies in their ability to 
describe the propagation of real gravity currents. A number of researchers have 
analysed the characteristics of observed atmospheric gravity currents and compared 
their propagation with idealized models (cf. Simpson 1969; Charba 1974; Wakimoto 
1982; Carbone 1982; Hobbs & Persson 1982; Shapiro et al. 1985; Nielsen & Neilley 
1990). These studies have applied front conditions of the form ( 5 )  and have obtained 
values of k that vary widely, ranging from about 0.7-0.8 (Simpson 1969; Wakimoto 
1982) to about 1.4 (Carbone 1982). (See also Droegemeier & Wilhelmson 1987 for a 
tabulation of estimates for k based on atmospheric observations.) This range falls 
generally below von Kirmin’s (1940) and Benjamin’s (1968) theoretical value of 2/2. 
However, in these studies, considerable uncertainty arises in estimating the depth, 
negative buoyancy, and propagation speed of the gravity current in a manner that is 
appropriate for comparison with simple theory. For example, the low values of k 
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reported by Simpson (1969) and Wakinioto (1  982) are based on the height of the head 
of the gravity current which is generally much greater than the height further behind 
the leading edge. Furthermore, possible effects of finite channel depths have been 
largely ignored for atmospheric gravity currents. An exception to this is the study by 
Nielson & Neilley (1990) of coastal fronts in which they estimate an effective channel 
height as the depth of the neutrally stable layer beneath a strong temperature inversion. 
Analysing four different cases, they consistently found k M 1.1 associated with values 
of a = H / d  x 0.2. which is in close agreement with Benjamin’s equation ( I  1 ) .  

We also seek guidance from laboratory gravity currents since they can be produced 
under much more controlled circumstances. However, numerous ambiguities also arise 
in interpreting the relations between laboratory gravity currents and theory. Keulegan 
(1958) evaluated (5) for the intrusion of salt water into a fresh-water channel (lock 
exchange) and obtained average values of lc ranging from 0.76 to 1.11 that have been 
referenced widely in the literature. The lower estimate is based on a current depth 
defined by the height of the head immediately behind the nose of the denser fluid, while 
the higher value results from using the height just behind the head. (The two heights 
differ by about a factor of two.) These estimates also depended on the effective 
Reynolds number for the experiment. However, Benjamin (1968) pointed out that for 
the highest Reynolds-number experiments, his theoretical estimate (1  1) for the front 
speed in the finite-depth channel compares well with Keulegan’s experimental results. 
In experiments with a lock of finite width, Keulegan (1957) reported k = 1.07 at early 
time and a corresponding CL = 0.21, based on the height behind the head. This is again 
close to the value k = 1.08 obtained from (1 1). 

Using both a modified lock-exchange experiment and one in which the gravity 
current is held stationary in an opposing stream, Simpson & Britter (1979) obtained 
propagation speeds about 20 ‘’0 below values predicted by Benjamin’s formula for 
moderate values of a (0.2-0.3). However, for small a, their results approach those of 
Benjamin. They attributed the discrepancies with Benjamin to both surface friction and 
interfacial mixing. Simpson & Britter (1980) provided further evidence of the retarding 
effects of surface friction by altering the speed of a belt moving along the surface of the 
channel to investigate the effects of head and tail winds on gravity-current propagation. 
In experiments using the moving surface belt to approximate free-slip surface 
conditions, Britter & Simpson (1 978) obtained gravity-current propagation speeds that 
appear to be significantly in excess of those predicted by Benjamin. These results will 
be discussed further in $5 .  

3. Two-layer shallow-water solutions 
To better understand the viability of gravity-current front conditions derived from 

an idealized steady-state flow-force balance, we shall consider further the initial-value 
problem for a gravity current produced by the instantaneous release of a semi-infinite 
reservoir of cold fluid having depth h, in a channel of depth d. We turn first to the two- 
layer shallow-water equations and extend the solutions obtained previously by 
Rottman & Simpson (1983) to re-examine the utility of Benjamin’s front condition. 
Within the shallow-water system, the gravity-current flow is highly compatible with the 
idealization assumed in Benjamin’s derivation (i.e. hydrostatic, vertically homogeneous 
flow within each layer). We also seek to clarify the nature of the flow for depth ratios 
y = h,/d larger than 0.5; the limiting case of y = 1 corresponds to the so-called ‘lock 
exchange’ problem which has received special attention in the literature. 

We consider two-layer flow in a channel with a rigid upper lid with subscripts 1 and 
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2 denoting the lower and upper layers, respectively. By eliminating the pressure from 
the momentum equations for each layer, the Boussinesq shallow-water equations can 
be expressed in the form 

where (i,j) are (1,2) and (2,l) in equations for the lower and upper layers, respectively, 
and h, + h, = d. (Here, the double subscripts do not imply summation.) 

For the reservoir problem, Rottman & Simpson (1983) used the additional 
constraint, u1 h, + u, h, = 0, to eliminate upper-layer variables from the lower-layer 
momentum equation, with the result 

u;L ah, 
C X  [ g’d 1 c?x 

224, 
-+(1-2a)++ I-a--(l-a)-Z g‘- = 0, 
a t  

where a = a/ ( l  -a) and a = h,/d as before. As demonstrated by Rottman & Simpson, 
solutions to (18) contain two modes that satisfy the characteristic equation 

and propagate along characteristic directions with velocities (see also Schijf & 
Schonfeld 1953) 

(20) C+ ~ = (1 -a) u1 k [a(l - a)g’d- “ u p .  

3.1. Constraints on the downstream-propagating @ant 

In the one-layer reservoir flows discussed in $2.1, the downstream-propagating 
characteristic moves with a velocity c, = u + (9’ h)f that is always greater than the speed 
of the fluid u in the gravity current. Thus, for any uf and h, that satisfies a specified 
front condition, disturbances originating in the reservoir are continually overtaking the 
front. In the two-layer system, however, this may not always be the case, owing to the 
more complex propagation of characteristics exhibited in (20). Figure 3 displays the 
front speed 0’ based on (11) along with the speed of the characteristic propagating 
toward the front c,, obtained from (20) with u1 = U. As a increases, the speed of the 
characteristic c, falls below the front speed required by Benjamin’s flow-force balance 
if the front height exceeds a = 0.347. Since the front cannot travel downstream faster 
than the fastest moving characteristic (otherwise cavitation would occur), the constraint 

a 6 0.347 (21) 

must hold at the front for physically plausible solutions. 
At a = 0.347, the front-relative flow in the upper stream passing over the front 

becomes just critical since the speed of the fastest downstream- (rightward in figures 
1 and 2) propagating characteristic exactly coincides with the front speed. Benjamin 
(1966) recognized this critical state and noted that for a given channel depth, it 
produces the maximum front speed (0.527(g’d)i) allowed by the flow-force balance 
(see figure 3) as well as a maximum in the steady-state dissipation rate (cf. figure 18). 
He suggested that if the receding stream is supercritical (a  > 0.347), the flow might 
abruptly return to a subcritical a < 0,347 through a hydraulic jump. However, the 
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0 0.347 0.5 
a 

FIGURE 3. Speed of fastest-moving disturbance at the front relative to Benjamin’s front speed (solid 
line, based on (11)) as a function of the front height a = H/d.  The long-dashed line depicts the speed 
of the characteristic c, at the front in a two-fluid system (computed from (20) with u1 = U ) ,  while the 
short-dashed line reflects the corresponding characteristic speed c, for the cavity-flow problem (from 
(28), recognizing a’ = a and g’ = g ) .  

propensity for the flow to return to a subcritical state is contingent on conditions being 
subcritical far behind the front, and this may or may not be the case, depending on the 
particular gravity-current flow. For the reservoir problem, we believe the significant 
constraint is that limitations on the speed of the fastest-moving disturbances preclude 
the possibility of reaching a supercritical state at the front. This result illustrates how 
the propagation of gravity currents may be constrained by factors that cannot be 
determined solely from steady-state analyses. 

Writing the steady-state form of (16)-(17) in terms of the x-derivatives of the four 
dependent variables, Stommell & Farmer (1952) demonstrated that for steady-state 
solutions to exist, either the local Froude number for the two-layer system must be 
unity : 

or the flow must have no variation in x. Here, the tildes denote velocities relative to the 
framework in which the flow is steady. Consequently, when the front-relative flow far 
behind the front is subcritical, a zone of constant state forms behind the front (actually 
behind the non-hydrostatic breaking head), and a remains less than 0.347. However, 
if the flow far behind the front is supercritical relative to the front, the height and speed 
of the front remains steady with a = 0.347, but the height of the fluid interface will 
increase with distance behind the front, forming a rarefaction wave whose slope 
continually decreases with time 

3.2. Constraints opt the upstream-propagating front 
Upon release of the dam, a depression wave propagates back into the reservoir 
(upstream relative to the evolving gravity current) whose character depends on the 
depth ratio y .  To clarify this behaviour, consider the propagation characteristics near 
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VJ 4 - 

FIGURE 4. Upstream-propagating jump for the two-layer reservoir problem in a coordinate system 
moving to the left with the jump. 

the leading edge where h, is close to h, and, therefore, u1 is small. In this region, the 
speed of the upstream-propagating mode in (20) becomes 

c- z - [a( 1 -a) g’d];, 
with the result that 

= O  at y = i .  (24) 

For y < 0.5, the leading edge of the wave travels faster (more negative) than the trailing 
portions and the slope of the interface will continue to decrease with time. Applying 
(22) in a coordinate framework moving with the leading edge, and using (23),  we see 
that flow ahead of the wave remains just critical over this range of depth ratios. 
However, for y > 0.5, as the depression wave begins to move upstream, trailing 
portions of the wave (having h, < h,) propagate faster than the leading edge, and thus 
the front of the wave continues to steepen until it forms a discontinuity. The leading 
edge moves faster than the speed expressed in (23) and the flow ahead becomes 
supercritical. This front is a hydraulic jump according to long-wave theory, but differs 
from the classical jump in that it does not steepen into an abrupt discontinuity (cf. Yih 
& Guha 1955, and simulations in 54). Rather, the slope remains finite through the 
influence of non-hydrostatic effects that are outside the scope of long-wave theory. 

To quantify the behaviour of the upstream-propagating jump, we examine the 
balances required for steady flow in a coordinate framework moving to the left with 
the speed of the jump 5, as illustrated in figure 4. This analysis necessarily contains 
ambiguity with regard to the overall dissipation in the flow since the downstream 
conditions are not known. (A similar indeterminacy would occur in Benjamin’s flow- 
force balance if dissipation was allowed within the cold fluid, in which case the surface 
pressure far behind the head would no longer equal the stagnation pressure.) 
Specifying the pressure at the top of the channel in the approaching flow to be zero, 
the pressure far downstream becomes 

g,(d) = +( - ui2) + g’A. (25) 
Applying the flow-force balance (10) far upstream and downstream, and using (25) and 
the continuity relations in the two streams, we obtain the expression 

V 2  y2 - - 2A’ f -  -- 
g’d [(2f -.)/a] + (1 - ?)’( 1 - 2a)/( 1 -a)” 

where A’ = Ald. 
Yih & Guha (1955) recognized the ambiguity resulting from the dissipation term and 

proposed to close the problem by assuming that the pressure along the face of the jump 
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FIGURE 5. Speed ( y )  and height (h, = h, -hJ of the left-moving front depicted schematically in figure 
4. The jump forms for y = h,/d > 0.5, and the dashed line represents the (critical) speed from (23)  
that would result if a jump did not occur. 

could be approximated by the pressure in the upper fluid far downstream (to the right). 
Separate flow-force balances can then be written for each stream, providing an 
additional equation that allows A to be determined. If we follow this procedure, the 
solution as y+ 1 yields g‘A = fVF. In this limit, the front is just an inverted density 
current that is identical to the downstream-propagating front. However, this value of 
A together with (25) would require the surface pressure within the cold pool to be 
double the stagnation pressure. In fact, our two-dimensional numerical solutions (see 
$ 5 )  indicate that the pressure behind the head is close to the stagnation pressure. 
Therefore, for consistency with Benjamin’s analysis (and also with the assumption of 
localized dissipation discussed in the Appendix), we set A = 0. This assumption is also 
consistent with Armi’s (1986) evaluation of weak internal hydraulic jumps. 

Evaluating (26) together with (22) over the range 0.5 < y < 1, we obtain the height 
and speed of the left-moving jump which are displayed in figure 5 .  These results 
confirm the supercritical nature of the approaching flow for y > 0.5 and that the height 
of the front reaches an upper limit 0.347d as 7 - 2  1, consistent with (22). 

3.3. Numerical shallow-water solutions 

The height and speed of the right-moving front can be computed simply by following 
the downstream-propagating characteristic in (19). Using the c, in (19) and (20), we 
integrate the characteristic equation in the direction of decreasing h,, subject to the 
initial conditions 

(27) 

u1 = 0, h, = h, for y < f, 

until Benjamin’s front condition (1 1) is satisfied, subject to the constraint (22). V, and 
h,, shown in figure 5,  represent the conditions at the left-moving jump. The behaviour 
of the solution derived from this procedure is depicted in figure 6. Notice that the 
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FIGURE 6. (a) Speed and (b)  height of the right-moving front in the two-layer reservoir problem (solid 
line) as a function of the reservoir dcpth ratio y = h,/d. The dashed lines dcpict the respective profiles 
from the one-layer shallow-water equations, but using the front condition for a finite-depth channel. 
The points denoted by crosses reflect the results of Rottman & Simpson’s (1983) laboratory 
experiments. 

height of the front increases as y increases until y reaches a value of 0.79. At this 
reservoir-depth ratio, the criticality constraint (22) begins to limit the front height and, 
as y is increased further, a = h,/d remains at 0.347. 

Figure 6 also displays the speed and height of the front estimated by simply 
combining the downstream-propagating characteristic (3) for the one-layer shallow- 
water system with Benjamin’s front condition for a finite-depth channel, and including 
the criticality constraint (22). This approximation yields a good estimate of the front 
speed across the entire range of channel depths, but as y increases, the front height 
grows noticeably more rapidly than the two-layer result, and the criticality constraint 
becomes active at y = 0.72. 

The two-layer front velocity is clearly higher than the values measured by Rottman 
& Simpson (1983), which are also shown in figure 6. By altering the front condition 
to (15), they found that setting k’ = 1 provided a good fit to their laboratory data. 
However, this result leaves open the question of whether Benjamin’s front condition is, 
in fact deficient or whether other simplifications in the two-layer shallow-water system 
are responsible for the discrepancies. We will consider these issues further in discussing 
the two-dimensional gravity-current simulations in 94. 

To evaluate the structure of the evolving shallow-water flow, we compute solutions 
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to (17) and (18) using a straightforward explicit leapfrog numerical scheme. We solve 
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3.4. Character of the ' lock-exchange' problem 
In the lock-exchange problem (y = l), two fluids of differing density initially fill each 
side of a channel and propagate relative to each other after a vertical separating barrier 
is removed. Yih (1965), in summarizing his earlier thesis work, applied principles of 
overall energy conservation to fluids of slightly differing density and proposed that the 
depth of each fluid remains half the channel depth across the entire length between the 
right- and left-moving fronts. Both fronts were found to propagate at a speed +(g/d)%, 
the same as Benjamin's inviscid result for a = i. 

However, this inviscid paradigm for lock-exchange flow has not been substantiated 
in any laboratory experiments or numerical simulations of two-fluid systems. In 
laboratory realizations of the lock exchange (cf. Keulegan 1957; Simpson & Britter 
1979; Rottman & Simpson 1983), the flow behind the heads of both the upstream- and 
downstream-propagating currents exhibits substantial turbulence and the current 
depths (although somewhat ambiguous) are significantly less than id. In fact, Simpson 
& Britter (1979) reported a = 0.33 for their lock-exchange experiments and speculated 
that larger values might be impossible to produce experimentally. These results, 
together with our numerical simulations discussed in the next section, are consistent 
with the shallow-water solution in figure 7 for y = 1 which, owing to the criticality 
constraint, maintain a depth ratio of 0.347 at the front of each current. This solution 
contains dissipation at the front, which is, in fact, unavoidable in two-fluid systems due 
to the Kelvin-Helmholtz instabilities arising in the strong shear at the interface 
between the two fluids. 

From experiments involving the intrusion of an air cavity along the top of a water 
channel, both Gardner & Crow (1970) and Wilkinson (1982) concluded that the cavity 
depth would approach one half the channel height behind the advancing front in the 
limit of vanishing surface tension and that the flow would remain essentially inviscid. 
However, waves propagating within the fluid beneath the cavity appear to be 
constrained by the same criticality condition as in the two-fluid system. Since the air 
cavity spreads beneath the upper lid of the channel, its propagation can be compared 
with fronts along the lower surface in the two-layer Boussinesq system by defining 
velocity as positive moving in the direction of the spreading cavity and a' as the ratio 
of the thickness of the air cavity to the channel depth. The characteristic propagating 
most rapidly towards the leading edge of the cavity moves at speed 
c, = u, + [gd(l -a')]+, where u1 is the velocity of the fluid beneath the cavity. At the 
front, continuity requires u1 = - a'U/( 1 -a') such that 

A- (1 l a w  

(gd)k - 1 - a (pd);' 

The propagation speed of the fastest-moving disturbances for the cavity problem are 
also displayed in figure 3 for comparison with the front speed based on Benjamin's 
flow-force balance (1 1). Although the propagation characteristics of disturbances for 
the cavity-flow and the Boussinesq two-fluid systems differ substantially over the range 
of current depths, both become critical relative to the front at the same value of 
a = 0.347. Thus, based on long-wave theory, a =  0.347 also represents the upper 
bound for the front height of the cavity, since heights larger than 0.347 would require 
the front to move faster than the fastest moving characteristic. 

Interpretation of the laboratory results based on long-wave theory is complicated by 
the influences of viscosity, surface tension, and surface wetting, as well as the presence 
on non-hydrostatic effects near the leading edge. If the cavity propagation is, in fact, 
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controlled by this hydrostatic constraint, the front would move at the maximum speed 
permitted by Benjamin's flow-force balance, which is only slightly faster than the 
inviscid speed (0.527 us O S ) ,  and therefore, difficult to resolve in either laboratory or 
numerical experiments. 

4. Two-dimensional gravity current simulations 
In order to gain further perspective on the validity of Benjamin's front condition as 

well as the accuracy of shallow-water theory in characterizing gravity-current 
propagation, we employ a two-dimensional numerical model to simulate atmospheric 
gravity currents. To maintain conditions analogous to laboratory currents, we use 
the following non-hydrostatic compressible Boussinesq equation set for shallow 
atmospheric motions : 

Ut + uu, + wu, + p ,  = P", (29) 

wt + U W , ~  + W W ,  + p z  -g6"/6', = F", 

Bt + ue, + woz = FB, 

p t  + c& + wz) = 0. (32) 

In these equations u and MI are the horizontal and vertical velocities, 0 is the potential 
temperature, p is the dynamic pressure, 8, is a reference potential temperature equal to 
300 K and c, is the sound speed having a value of 300 m s-l. The subscripts (x, z ,  t )  
indicate differentiation with respect to the specified independent variable. As 
anticipated from Benjamin's analysis, dissipation is required in order to obtain well- 
behaved numerical solutions. The terms P, P", and F' represent turbulent mixing and 
numerical damping. The turbulence parameterization uses a first-order closure 
formulation that depends on the relative strengths of stratification and shear (Lilly 
1962) and is described in Durran & Kleinp (1983). A small fourth-order numerical 
damping term is also included to stabilize the sharp discontinuity at the leading edge 
of the cold pool. The general solution technique and finite differencing for the elastic 
system follows Klemp & Wilhelmson (1978) except that we use only second-order 
centred spatial differencing for these calculations. 

For these simulations, we consider the same initial-value problem as in the previous 
section for the shallow-water equations - the instantaneous release of a semi-infinite 
pool of cold air (the dam-break problem). The initial cold pool is 5 km in depth with 
a potential temperature deficit A8 = - 10 K. The computational domain has a 
horizontal dimension of 160 km and Ax = Az = 250 m. A number of simulations were 
conducted with the channel depth varying from 5 to 50 km, thus producing results for 
0.1 6 hold 6 1 .O. In these simulations, we first consider propagation in the absence of 
surface friction. This is accomplished by eliminating the vertical stress divergence at the 
lowest grid level (one-half grid interval above the ground) rather than by requiring that 
vertical gradients vanish at the surface. 

Solutions at f = 15 min are shown in figure 8 for reservoir depth ratios over the 
range 0.1 6 y 6 1.0. These gravity currents are comparable to the corresponding 
shallow-water solutions displayed in figure 7, with the principal differences being the 
non-hydrostatic circulation in the vicinity of the head. The upstream-propagating 
disturbances are also consistent with shallow-water theory; for y < 0.5, a rarefaction 
wave develops, while for y > 0.5, the interface steepens near the front and becomes 
turbulent. In this non-hydrostatic system, however, the upstream-moving front 
develops turbulence through shearing instability across thc fluid interface (in a similar 
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FIGURE 8. Potential temperature field at 15 min (t(g;/h,)i = 7.27) for two-dimensional simulations in 
a channel having an initial reservoir depth ratio y = h,/d of (a) 0.1, (b) 0.5, (c) 0.8, and (a) 1.0. 
Contours range from 290.5 to 299.5 K in increments of one degree. Short-dashed lines denote the 
location of the initial reservoir. 

manner to that occurring in the head of the downstream-propagating front), and does 
not develop the classical forward-breaking jump structure suggested by the shallow- 
water system. 

To carry out the simulations far enough in time to produce nearly steady conditions 
in the region behind the head of the propagating cold pool, we found it necessary to 
integrate out to about 4 h. Over this time, the leading edge of the gravity current 
propagates a distance x f  - 60h0-90h, downstream of the ‘dam’, depending on the 
depth ratio hold. Keulegan (1 958), in laboratory experiments for the lock-exchange 
problem, similarly found that large ratios of +/h, were required to achieve constancy 
in the height of the head and region immediately behind it. For computational 
efficiency, we translate the coordinate system at the speed of the leading edge of the 
cold air such that the head of the current remains nearly stationary while the reservoir 
translates to the left (and eventually out the left boundary). Specifying open boundary 
conditions along the lateral boundaries (see Klemp & Wilhelmson 1978), and making 
the horizontal domain large enough to contain a broad portion of the initial reservoir, 
the evolving flow near the head remains independent of the location of the left 
boundary (confirmed by comparing simulations conducted with differing domain 
sizes). During the entire integration period, the propagation speed of the leading edge 
of the cold pool remained essentially constant, and thus stationary in the translating 
coordinate system. 

Because of the limited resolution in the model, the simulated flow in the head region 
does not resolve the shear layer along the interface between the two streams or the 
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FIGURE 9. Potential temperature field (as in figure 8) at 30 min for a channel depth of y = h,/d = 0.5 
using a spatial grid increment of (a) 250 m and (b) 50 m. Velocity vectors are scaled such that the 
distance between horizontal tick marks corresponds to 40 m s-'. In both simulations, the coordinate 
system is translating to the right with respect to the reservoir at 26.0m ss1, and the actual 
computational domain extends to x/h, = 8. 

eddies that form and disperse due to Kelvin-Helmholtz instability. However, numerous 
tests with varying grid sizes demonstrate that the propagation speed of the leading edge 
of cold air is not sensitive to resolution of the detailed structure within this mixing 
region. Figure 9 illustrates the comparable behaviour of simulations with respective 
grid sizes of 250 m and 50 m at 30 min in a channel having y = 0.5. In spite of the 
factor of 5 difference in resolution (and a corresponding difference in the magnitude of 
the parameterized mixing), the leading edge of the cold air is in virtually the same 
location. This insensitivity of the propagation speed to changes in resolution and 
strength of mixing has also been demonstrated in other modelling studies of gravity 
currents (cf. Crook & Miller 1985; Droegemeier & Wilhelmson 1987). These results are 
consistent with our findings (see Appendix) that the propagation speed is not sensitive 
to the detailed distribution of head loss and that the overall dissipation adjusts to 
provide the required flow-force balance across the front. 

Since the initial conditions in these two-dimensional gravity-current simulations are 
identical to those used for the shallow-water solutions described in the previous 
section, we may compare directly the speed of the leading edge of the cold air with the 
data in figure 6. These results are combined for comparison in figure 10. The front 
speeds in the two-dimensional simulations fall noticeably below those predicted by 
shallow-water theory, but are still significantly higher than those observed in Rottman 
& Simpson's (1983) laboratory experiments. Estimates of the thickness of the gravity 
current in the region behind the head (discussed further below) are plotted in figure 



The dynamics of gravity currents in a channel 

1 .o 

187 

0.2 

h 

0 0.5 1 .o 
Y 

FIGURE 10. As in figure 6, but including the (a) speed of the gravity current and (b) the height behind 
the head obtained from two-dimensional simulations with no surface friction (displayed by the 
symbols I, connected by a thin solid line). Propagation speeds obtained from simulation with a 
surface drag coefficient of 0.005 are also included in (a), represented by the D symbols and connected 
by a thin solid line. 

10(b) and reveal a maximum in current depth for hold = 0.7 that is qualitatively similar 
to the behaviour in the shallow-water solutions caused by the criticality constraint (22). 
For the lock-exchange problem (y  = l), the height behind the head is h,/d = 0.3, which 
is comparable to the value of 0.347 in the shallow-water system. 

We also ran simulations that included a surface drag term at the lowest grid level on 
the right-hand side of (29) of the form - C, u z / Z ,  where 2 = ~ A z  reflects the height of 
this level above the surface. Using C, = 0.005 as an estimate of the drag coefficient for 
a turbulent boundary layer, the propagation speeds decrease to values that agree well 
with the laboratory data (see figure 10a). 

In considering the overprediction of the front speed in the two-layer shallow-water 
system, we ask whether or not Benjamin’s formula represents the correct front 
condition for the leading edge of the denser fluid. As mentioned in $3.3, Rottman & 
Simpson (1983) obtained better agreement with the laboratory experiments using 
k’ = 1 in the front condition (15) instead of k’ = 2/2 from Benjamin’s formula. 
However, figure 10 indicates that resolving the frontal structure in a two-dimensional 
non-hydrostatic model with no surface friction still leaves a discrepancy with the 
laboratory results. At most, we would expect uncertainty in the front condition to be 
responsible for the difference between the top two curves in figure lO(a). 
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FIGURE 11. Two-dimensional simulation of the leading portion of a propagating gravity current for 
y = h,/d = 0.5. (a) Buoyancy integral B computed from (33), (b) current height H ,  represented by 
the $ = 0 streamline computed from (34), and (c)  front speed U, estimated from Benjamin's formula 
(1 1) at each grid column in x, nyrmalized by the actual front speed U,. Equation (1 1) is evaluated 
using H ,  for H and B for (g'H).. Profiles are displayed at 3 h (dashed lines) and 4 h (solid lines). 

To evaluate the validity of Benjamin's formula for these simulated gravity currents, 
we must estimate an  appropriate depth and buoyancy deficit for the cold pool. In 
Benjamin's analysis, the negative buoyancy producing the net pressure increase 
between the surface and the top of the cold pool is just -g'H. We estimate this 
quantity from the continuously varying model fields by vertically integrating the 
buoyancy deficit : 

(g'H),  % B = - 1 F d z .  (33) 

An estimate for the depth of the gravity current can be obtained based on the height 
of the dividing streamline computed from the location of the @ = 0 streamline in our 
coordinate framework in which the leading edge of the gravity current is stationary. 
With this approach, the top of the gravity current is defined as the height H ,  at which 

udz = 0. JuHm (34) 

The results of these calculations are illustrated in figure 11 for the case hold = 0.5. 
The buoyancy integral B, computed according to (33) at each grid column in x, is 
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FIGURE 12. Normalized front speed in two-dimensional gravity current simulations with H,,, 
computed from (a) the height of the $ = 0 streamline (34) and (b)  an effective buoyancy depth B/&. 
Heavy bars denote the range of variation in B behind the head, while the solid curve represents 
Benjamin’s formula (1 1). The dashed line indicates the critical depth ratio in the shallow-water 
system. 

plotted at both 3 and 4 h in figure 11 (a),  and the corresponding H,, derived from (34) 
are shown in figure l l (b) .  

The evaluation of Benjamin’s formula requires values of B and H ,  that represent the 
steady conditions behind the front. Inspecting figures 11 (a )  and 11 (b), it is clear that 
in the region behind the head of the current, these quantities are not entirely constant 
over time or space. Mindful of this ambiguity, we chose an average value of B and H ,  
at 4 h over the interval between 1 and 3 head widths behind the head of the current as 
a representative estimate of the conditions behind the head. Simulations over the range 
0.1 < h, < 1.0, yield the results shown in figure 12(a). Here, the heavy bars reflect the 
amount of variation in B over the averaging interval in x, and are a measure of the 
uncertainty in the plotted data. 

An alternative method of estimating H,  is to simply divide the buoyancy integral by 
gh, the reduced gravity in the initial reservoir. The resulting H ,  then corresponds to the 
effective depth of an undiluted stream having a total buoyancy deficit B. (This method 
was used by Crook & Miller 1985 in their analysis of two-dimensional gravity-current 
simulations.) Replotting the front speeds against HJdcomputed in this fashion yields 
the results displayed in figure 12(b). The heavy bars now slope with height since H ,  
(now proportional to B) also varies across the range in B reflected by the height of each 
bar. 

The normalized front velocities depicted in figure 12 follow essentially along 
Benjamin’s curve (1 1) and suggest that, to the level of accuracy that the comparison 
can be made, Benjamin’s idealized flow-force balance provides a reasonably accurate 
characterization of the propagation of the front. Thus, we conclude that the 
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discrepancies between the two-dimensional and shallow-water model propagation 
speeds in figure 6 are not caused by Benjamin’s formula (used as the front condition 
in the shallow-water system) overestimating the speed of the front. Rather, we believe 
that the lack of interfacial mixing between the two streams in the shallow-water system 
(clearly present in the two-dimensional simulations) is most likely responsible for the 
differing behaviour. Figure 10(h) reveals that the resulting height of the gravity current 
behind the head is less than the height in the shallow-water system. Through the front 
condition, lower heights translate into lower front speeds, as reflected in the profiles in 
figure lO(a). 

In applying Benjamin’s formula to observed atmospheric gravity currents, obtaining 
representative soundings in appropriate locations behind the head is often not possible. 
Figure 11 (c) provides an indication of the sensitivity of Benjamin’s estimated front 
speed to the position within the gravity current at which it is calculated. This is 
accomplished by using the pointwise values of B and H ,  in figures 11 (a) and 11 (b) to 
compute a front speed U, from (11) and (33) at each grid column in x. Beginning 
almost immediately behind the leading edge, the formula provides a reasonable 
estimate of the front speed, producing a maximum error about 10% too low in the 
region just behind the head. 

5. Dependence on source conditions 
The results discussed above indicate that Benjamin’s formula may somewhat 

overpredict gravity current propagation speeds if the surface drag is significant. 
However, other studies suggest that gravity currents may propagate faster than 
predicted by Benjamin. Britter & Simpson (1978) de\;ised laboratory experiments in a 
channel that approximated a free-slip lower boundary by holding a gravity current 
stationary with an opposing free stream in which the boundary layer was eliminated 
with a moving surface belt ahead of the current. Their analysis of the experimental data 
produced values of k’ in (1 5 )  considerably in excess of 2/2 for small ratios of current 
to channel depth. (Their results probably overestimate this excess since they represented 
the gravity-current height based on the thickness of the region advancing toward the 
nose of the current rather than on the height of a mean dividing streamline, which 
seems more appropriate for comparison with Benjamin’s analysis.) Crook & Miller 
(1985) obtained gravity-current speeds about 15 YO faster than Benjamin’s estimate in 
numerical simulations having a fixed source of denser fluid entering the channel with 
a prescribed velocity, free-slip conditions at the channel walls, and an imposed mean 
wind to retard the movement of the gravity current across the domain. Crook & Miller 
concluded (correctly, we believe) that the greater-than-Benjamin speeds were caused by 
circulation within the cold pool in which the nose-relative surface velocity is directed 
toward the leading edge. This decreases the surface pressure far behind the front 
relative to the stagnation pressure at the nose (through Bernoulli effects) and therefore 
requires a stronger opposing free-stream velocity to produce the pressure difference 
across the current necessary to maintain a steady balance. In the two studies just 
mentioned, free-stream velocities were imposed to restrict the propagation of the front 
away from the source of the cold fluid. We believe this may be an important factor in 
increasing the propagation speed above values predicted by Benjamin’s formula. 

To illustrate a situation producing front speeds in excess of Benjamin’s formula, we 
consider the steady-state flow-force balance for a gravity current (shown in figure 13) 
formed by cold fluid being pumped into a channel with velocity U, over a depth h,, 
subject to an opposing free-stream velocity U < 0 just sufficient to hold the leading 
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FIGURE 13. Idealization of steady-state gravity current with a constant inflow at the source and 
an opposing free-stream flow that maintains a stationary front relative to the source. 

edge of the current stationary. Assuming a constant outflow zit above the inflow at the 
left, continuity requires 

u-au, 
1-a ' 

uI = (35)  

where a = h,/d. As the cold fluid approaches the stationary leading edge, it must 
eventually reverse direction and exit to the left above the source region. Assuming the 
return flow remains undiluted and exits with velocity uL, the effective thickness of the 
gravity current H is given by 

where p = - U,/U. Here, we have purposely chosen a highly idealized flow 
configuration to simplify the analysis ; more detailed structure, containing vertical 
gradients of velocity and potential temperature within the cold pool (cf. Britter & 
Simpson 1978; Crook & Miller 1985), can be included in a straightforward manner. 

Defining the free-stream pressure asp, = 0, the stagnation pressure isp, = i U 2  while 
the surface pressure near the source becomes p l  = :( U 2  - Ui) .  Applying the flow-force 
balance (10) across the channel yields the expression 

U 2  2(1 - a ) ( l - - H / d )  
g'H = (1 +p) [l -p+ a( 1 + 3p)] ' (37) 

which has a form similar to (1 l), but now contains terms on the right-hand side 
involving U .  

The normalized free-stream velocity obtained from (36) and (37) is displayed in 
figure 14 as a function of p. The profile for p = 0 reproduces Benjamin's result, while 
for small H/d ,  the speed increases with increasing p. For H / d  = 0, the speeds 
correspond exactly to those that would be predicted by Benjamin's derivation 
assuming the surface pressure behind the front is p l  = i ( U z -  U i )  instead of $.I2. At 
larger values of H/d,  speeds for positive p drop below Benjamin's curve due to 
acceleration of the free stream as it passes over the current, which lowers the pressure 
in the free stream behind the front. The profiles are terminated at values of H / d  where 
flow above the current becomes critical (estimated by u,2/g'(d- H )  = 1, as discussed in 
53.1). 

In the above analysis, the nose-relative flow U, within the cold pool is an arbitrary 
parameter that must be specified. For the case of cold air spreading under its own 
weight, shallow-water solutions to the dam-break problem discussed in 52 indicate that 
a constant zone forms behind the front in which conditions do not depend on the 
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FIGURE 14. Normalized front speeds for an idealized gravity current in which the front is held 
stationary relative to the source, plotted as a function of /I = - U,/U over the range 0 C /I d 1, in 
increments of 0.1. 
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FIGURE 15. Vertical profile of horizontal velocity in region behind the head of a gravity current 
simulated in the two-dimensional model at 4 h for y = h,/d = 0.1. u represents the horizontal average 
of u over the interval 0 < x / h ,  < 8 (see figure 16 for reference). 

detailed evolution of the source region (reservoir). The flow speed within this constant 
zone is supercritical relative to the reservoir; disturbances near the front cannot 
propagate back to the source region and the flow near the front remains dependent 
only upon the downstream-propagating characteristic. However, if the flow near the 
front becomes subcritical relative to the source, the source region will exert a more 
complex influence on the front. In the one-layer shallow-water system, this occurs if 
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FIGURE 16. Surface pressure pSf  in the two-dimensional gravity current simulation for y = h,/d = 0.1 
at 3 h (dashed line) and 4 h (solid line). The short-dashed line indicates the theoretical stagnation 
pressure, ;Up, at the leading edge. 

front speed is restricted such that k < 1 in ( 5 ) ,  in which case propagation of 
disturbances from the front back to the reservoir destroys the constant critical 
conditions (4) that provide the control for the expanding gravity current. Tf the 
reservoir is replaced by a source having a fixed Uo over a depth ho, a constant zone 
satisfying Benjamin’s condition and depending only on the downstream-propagating 
characteristic will again form behind the front provided the front is not restricted in 
propagating away from the source by an opposing flow. 

In the two-dimensional gravity current simulations presented in $4, the leading edge 
of the cold fluid is permitted to propagate freely away from the source region. In this 
situation, we find that the nose-relative circulation behind the front is relatively weak 
and has little impact on the propagation speed. Figure 15 depicts the vertical profile of 
horizontal velocity u in a nose-relative framework for the case hold = 0.1 at 4 h, 
obtained from a horizontal average of u taken between about 2 and 3 head widths 
behind the leading edge. While the speed of the front relative to the undisturbed 
environment is 29.5 m s-l, the surface velocity approaching the nose within the cold 
fluid is only about 6 m s-l. Evaluating (37) for a i O ,  reveals that a finite nose-relative 
velocity Uo at the surface behind the gravity-current head alters the steady-state flow- 
force balance in a manner that increases the relative speed of the leading edge by a 
factor of (1 -pZ)>-4. Thus, the circulation within the cold pool ($ = 0.2) would be 
expected to increase the speed of the cold pool by 2 %. This result is corroborated by 
the model surface pressure distribution, shown in figure 16, which rises to its stagnation 
value just behind the front, drops off sharply within the head, and then recovers to 
nearly the stagnation pressure in the region behind the head. 

These results also appear to be consistent with results from laboratory experiments. 
Simpson & Britter (1979) conducted channel experiments in which p was consistently 
about 0.16 and obtained gravity-current speeds that did not exceed Benjamin’s 
formula. Britter & Simpson (1978), in experiments reporting gravity-current speeds in 
excess of Benjamin’s formula, produced values of ,!7 as large as 0.3. In Crook & Miller’s 
(1985) numerical simulation, was about 0.4. If the gravity current is restricted in 
propagating away from its source, /? essentially becomes another parameter influencing 
the propagation, and is dependent on the strength of the source. 

Based on the analogy with the shallow-water system, we expect that the circulation 
near the leading edge of a gravity current should become independent of the source 
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conditions when disturbances near the front cannot propagate back to the source 
region. The two-dimensional model results just described indicate that in this situation, 
the internal circulation is weak and does not alter the front speed significantly from 
Benjamin’s result. We conclude, therefore, that the larger propagation speeds obtained 
by Britter & Simpson (1978) and Crook & Miller (1985) may arise from stronger 
internal circulation within the gravity current caused by an opposing flow that restricts 
the propagation of the front away from the source region. 

6. Summary 
Although there are quantitative differences between the shallow-water and the full 

two-dimensional systems, the shallow-water solutions reveal interesting features that 
appear relevant to the more complex two-dimensional simulations. In 93. we extended 
earlier numerical simulations of the two-dimensional shallow-water system by Rottman 
& Simpson (1983) to cover the entire range of reservoir depths, 0 < h,/d < 1, and 
found that constraints on both the upstream- and downstream-propagating dis- 
turbances can influence the character of the leading edge of the gravity current. If the 
initial reservoir has a height that is greater than one-half the channel depth, the 
upstream-propagating depression wave steepens into a hydraulic jump, although non- 
hydrostatic influences prevent it from becoming an abrupt discontinuity. Because of 
limitations in the speed of downstream-propagating disturbances, the front produced 
by the denser fluid spreading into channel is constrained such that h,/d d 0.347. Thus, 
energy-conserving gravity currents which require h,/d = 0.5 cannot be realized 
physically for this type of initial-value problem. This constraint may not hold for all 
gravity currents in a channel, since the realizability of supercritical conditions at the 
front may depend on how the gravity current is being generated. However, this 
suggests that in certain situations, knowledge of the time-dependent evolution is 
required to determine the long-lived or steady properties of the gravity current. 

Although the two-dimensional shallow-water solutions using Benjamin’s front 
condition leads to an overprediction of fronts speeds observed in laboratory 
experiments, this result does not reveal whether the discrepancy is due to inadequacies 
in the front condition or in other aspects of the shallow-water system. Our two- 
dimensional simulations with the continuous Boussinesq equations indicate that, in 
fact, Benjamin’s (1968) analysis provides a good overall representation of the essential 
dynamics of a steady propagating gravity current and that his idealized flow-force 
balance leads to reasonable estimates for the speed of the leading edge. Comparison of 
the non-hydrostatic numerical simulations with the shallow-water results indicates that 
the overprediction of the front speed in the shallow-water system is due to the lack of 
interfacial mixing between the two layers and the absence of surface friction rather 
than deficiencies in Benjamin’s front condition. Although surface friction may have 
significant influences on gravity-current propagation (cf. figure 1 O), its effects are 
difficult to generalize since it depends on situation-specific factors such as ground- 
relative propagation speed and surface roughness, and its presence may prohibit the 
development of steady-state characteristics in the vicinity of the front. 

While freely propagating gravity currents appear to satisfy Benjamin’s formula, 
currents retarded or held stationary relative to their source may produce front speeds 
relative to the free-stream flow that significantly exceed Benjamin’s result owing to 
enhanced internal circulation within the current. In these situations, an extra 
parameter enters the problem and may produce behaviour that is very different from 
a classical gravity current. (For example, a current could be maintained in the absence 
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of any density differences between the two streams,) In fact, atmospheric gravity 
currents frequently are constrained from propagating away from their source region. 
A commonly occurring example is the cold-air outflow from a squall line in the 
presence of significant low-level wind shear (cf. Thorpe, Miller & Moncrieff 1982; 
Rotunno, Klemp & Weisman 1988). In these situations, the circulation within the 
gravity current may be fundamentally dependent on the detailed influence of the source 
region. If this occurs, propagation of the current depends on additional factors that 
cannot be known a priori. 

In this study, we have considered only gravity currents propagating in neutrally 
stable environments in the absence of vertical wind shear. Clearly, both stability and 
wind shear are often present in the vicinity of atmospheric gravity currents and further 
complicate their behaviour. Stable layers can act as an effective ‘channel lid’ for the 
flow (cf. Nielson & Neilley 1990) or produce undular bores that propagate ahead of the 
gravity current (cf. Crook & Miller 1985). Vertical wind shear introduces another 
source of circulation that interacts with buoyancy-generated circulation within the 
gravity current. In these situations, the free-stream flow may not simply pass over the 
gravity current and continue downstream; rather, a significant portion of the flow may 
reverse direction and return upstream at upper levels (cf. Rotunno et al. 1988; 
Moncrieff & So 1989). These issues remain to be investigated in future research. 

The authors wish to thank Larry Armi for numerous stimulating discussions and 
helpful suggestions during the course of this research. 

Appendix. Flow-force balance with localized dissipation 
Benjamin’s (1968) derivation of the front condition for a steady gravity current 

assumes that flow in the free stream remains uniform far downstream as it passes over 
the cold pool and, therefore, that the head loss is independent of height. In real gravity 
currents, the dissipation is concentrated in the vicinity of the interface between the two 
streams, and flow in the upper portion of the channel may remain inviscid far 
downstream. (This result is confirmed in our numerical simulations in $4.) We present 
here an alternative derivation for the propagation speed and dissipation assuming the 
head loss is localized in the vicinity of the cold pool, and demonstrate that the resulting 
conditions are nearly indistinguishable from those derived by Benjamin. 

We consider the steady gravity current as illustrated in figure 17, in which the free- 
stream flow (u, = U )  has velocity ul(z) far downstream, with u,(d) = U, at the top of 
the channel. (For simplicity, we assume that the right-to-left flow has positive velocity.) 
Thus, 

Ud+ Q u, = ~ 

d-H ’ 

where Q is the integrated velocity deficit: 

Assuming that flow near the top of the channel is inviscid, the Bernoulli equation 
requires p , ( d )  = - f ( U f -  U z ) .  Integrating p ,  to the surface and equating it with the 
stagnation pressure p ,  = $U2 yields 

U, = (2g‘H)i. (A 3) 
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FIGURE 17. Steady gravity current in a channel with dissipation localized near 
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FIGURE 18. Propagation speed U and dissipation rate ed for a steady gravity current from an analysis 
allowing non-uniform head loss (solid lines) and from Benjamin’s analysis (dashed lines) as a function 
of the front height a: = H / d .  Profiles are rendered dimensionless using the values from Benjamin’s 
analysis at CL = 0. 

Employing the usual wake approximation, we assume that the velocity deficit far 
downstream becomes small (Batchelor 1967, p. 349), such that 

u; dz = [U,Z - 2U,(U, - ul) + (U,  - uJ2] dz 

z U:(d-H)-2Lr,Q. (A 4) 
Thus, using (A 1), (A 3), and (A 4), the flow-force balance (10) reduces to 

= d2{2-(1+2.5a)i}. 
U 

(g’H)3 

As illustrated in figure 18, this expression is nearly identical to Benjamin’s equation 
(1 1)- 

The dissipation rate due to the cold pool is represented by 
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which for Benjamin's case of uniform head loss, can be evaluated using (14). With head 
loss localized in the vicinity of the cold pool, this expressions becomes 

ed = p [ u , [ p , - p z + + ( ~ z - u '  111 dz. (A 7) 

Again neglecting terms that are second order in U, - uzr we obtain 

where 

PU'Q 
(1 -a)2' 

ed = ~ 

Q (1+2.5a);-l-a 
U, H = cc 

The integrated velocity deficit Q reaches $!JH for a = 0 and vanishes as a-tO.5. The 
dimensionless dissipation (A 8), along with that predicted in Benjamin's analysis, are 
depicted in figure 18. 

The similarity of profiles displayed in figure 18 indicates that the propagation and 
overall dissipation are insensitive to the detailed distribution of head loss above the 
cold pool. 
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